Tetrahedron 66 (2010) 3447–3451

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/00404020)

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Novel biphasic reaction system of ferric chloride dissolved imidazolium hexafluorophosphate and benzotrifluoride: application to electron transfer reaction of cyclopropyl silyl ethers

Hiroyuki Tsuchida, Eietsu Hasegawa *

Department of Chemistry, Faculty of Science, Niigata University, Ikarashi-2 8050, Niigata 950-2181, Japan

article info

Article history: Received 6 January 2010 Received in revised form 8 March 2010 Accepted 8 March 2010 Available online 16 March 2010

ABSTRACT

Ferric chloride (FeCl₃) promoted electron transfer oxidation of bicyclic cyclopropyl silyl ethers was performed in biphasic solution system of 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) and benzotrifluoride (BTF). The resulting chloro-substituted ring-expanded cycloalkanones were treated with an appropriate base to produce substituted cyclic enones. These two-step reactions were successfully devised to proceed in a simpler manner in which the ordinary work-up operations for the former oxidation step, such as water-quench, extraction, and evaporation, were omitted; imidazole was found to be the most suitable base for the latter elimination step.

- 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Development of practically convenient as well as environmentally benign procedures to promote the transformation of organic molecules should be appreciated not only for organic synthesis but also for green sustainable chemistry.¹ Among the efforts to achieve this objective is the use of environmentally benign reagents and solvents. Iron salts are recognized as one of the least expensive and toxic reagents, and thus the use of iron salt reagents is beneficial. $²$ Some imidazolium salts, known as room</sup> temperature ionic liquids and environmentally benign solvents, have been frequently used for organic synthesis.^{[3](#page-4-0)} As suggested by Ogawa and Curran, benzotrifluoride (PhCF₃, BTF) is also known to be an environmentally benign solvent, and thus BTF could replace benzene and methylene chloride in several cases.⁴ On the other hand, a procedure to promote the sequential chemical processes with less experimental operations is also compatible with green sustainable chemistry. For example, one-pot reaction that promotes sequential processes in a single flask is one of the repre-sentative examples.^{[5](#page-4-0)}

Electron transfer (ET) is a fundamental chemical process that is operating in chemical as well as biological reduction and oxidation reactions, and various ET based synthetic procedures have been developed. 6.7 Several years ago, we planned to develop synthetically useful procedures that could promote the desired ET reactions in a green sustainable manner, and have reported

several successful examples. 8 In the course of these efforts, we encountered an intriguing observation in which addition of 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) to ferric chloride (FeCl₃) in BTF significantly accelerated the ring-expansion reaction of a bicyclic cyclopropyl silyl ether.^{[8c](#page-4-0)} Upon addition of BmimPF $_6$, solid FeCl₃ dissolved in this ionic liquid and the reaction proceeded under the liquid–liquid biphasic condition.

In this paper, we would like to report the characteristic feature of this novel biphasic reaction system of FeCl3 dissolved in BmimPF $_6$, which could be recognized as FeCl₃–BmimPF $_6$ hybrid reagent, and BTF to promote electron transfer reaction of the title substrates. Substrates and products together with representative reagents and solvents investigated are shown in Chart 1.

^{*} Corresponding author. E-mail address: [ehase@chem.sc.niigata-u.ac.jp.](mailto:ehase@chem.sc.niigata-u.ac.jp) Chart 1.

^{0040-4020/\$ –} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.03.029

2. Results and discussion

In our earlier effort, we have found that ceric ammonium nitrate, $Ce(NH₄)₂(NO₃)₆$ (CAN), was effective for oxidative ringopening reaction of certain bicyclic cyclopropanol derivatives as shown below.⁹

Thus, silyl ether 1a was subjected to the reaction with CAN in $CH₃CN$, and desired ring-expanded enone 2a was obtained in moderate yield as shown in Table 1 (entry 1).^{8e} Then, we replaced CH3CN by BTF, and found the reaction did not go to completion, and only a trace amount of 2a was formed; deprotected cyclopropanol **5a** was the major isolable product (entry 2). FeCl₃ with pyridine in DMF was also effective to obtain 2a in good yield after the treatment of β -chlorobenzosuberone 3a with a methanolic NaOAc solution at reflux (entry 3).^{[8e](#page-4-0)} We were rather surprised to find that toluene could be used for the reaction giving 2a in moderate yield although FeCl₃ appears to be insoluble in toluene (entry 4). On the other hand, BTF was not as effective as above two solvents (entry 5).^{[8c](#page-4-0)} However, addition of BmimPF₆ to this reaction mixture completely consumed 1a and gave 2a in the comparable yield to the reaction conducted in DMF (entries 3 and 6).^{8c,e}

Table 1

Reaction of 1a with oxidizing reagents $(0x)^{2}$

^a Substrate 1a (0.50 mmol), Ox (2.2 equiv), solvent (5.0–10.0 mL), at room temperature for 1 h.

^b Crude product mixture was heated with NaOAc (5.0 equiv) in MeOH (2.0– 5.0 mL) at 85 $^{\circ}$ C for 2 h.

^c Ce(NH₄)₂(NO₃)₆.
^d Compound **5a** was obtained (22%).

 e Compound $6a$ was obtained (12%).

These preliminary observations prompted us to further explore the characteristics of this new reagent system of $FeCl₃$ with $BminPF₆$ in BTF. Our working hypothesis for the observation was that the liquid-liquid biphasic system of $FeCl₃$ dissolved in $BminPF₆$ and BTF might provide better condition for an effective contact between 1a and Fe(III) ion compared to the solid–liquid biphasic system of FeCl₃ and BTF. If so, the quantity of BmimPF₆ might influence the reaction, which was examined at first. In these experiments, instead of water-quench and $Et₂O$ extraction used for the experiments in Table 1, separation of BTF layer followed by the rinse of BmimPF $_6$ layer with Et₂O was performed (see [Experimental](#page-3-0) [section\)](#page-3-0).^{[10](#page-4-0)} The results are summarized in Table 2. In all entries, NaOAc treatment of crude 3a afforded 2a in various yields depending on the quantity of BmimPF $₆$ while trace amount of 6a</sub> was also detected in certain case. Addition of some quantities of BmimPF $₆$ increased both the conversion of 1a and the yields of 2a</sub> (entries 1–3), however further addition significantly decreased them (entries 4 and 5).

Table 2

BmimPF₆ quantity effect on the oxidation of 1a with FeCl₃ and pyridine in BTF^a

1) FeCl₃ / pyridine / BmimPF $_6$ / BTF 2) NaOAc / MeOH

Substrate 1a (0.50 mmol), FeCl₃ (2.2 equiv), pyridine (1.0 equiv), BTF (5.0 mL), at room temperature for 1 h. Crude product mixture was heated with NaOAc $(5.0$ equiv) in MeOH $(5.0$ mL) at 85 °C for 2 h.

^b Same as the entry 5 of Table 1.

The solubility of solid FeCl $_3$ in BTF appears to be minimal since BTF became only pale yellow upon addition of FeCl3. The oxidation reaction of 1 in BTF was indeed inefficient without BmimPF₆ (entry 5 in Table 1). On the other hand, addition of BmimPF $_6$ to FeCl₃ resulted in the formation of liquid phase containing FeCl₃. Notably, this brown colored liquid appears to be in part dissolved in BTF because BTF phase clearly colored yellow by mixing these two phases. Increasing the quantity of $BmimPF₆$ decreased the concentration of $FeCl₃$, and therefore the reaction was gradually decelerated by adding more quantity of BmimP F_6 (entries 4 and 5 in Table 2).

We next attempted to devise the simpler experimental operations, which are illustrated in Figure 1. If upper BTF layer of the reaction mixture is transferred to another flask and subsequently treated with appropriate base, requisite two-step transformations

Figure 1.

could be achieved in simpler manner. For this purpose, we needed to search for the base compatible with BTF. As shown in Table 3, NaOAc, which is insoluble in BTF was not efficient (entry 1). Thus, we examined BTF soluble amine bases. While pyridine was not effective at all (entry 2), more basic $Et₃N$ promoted the reaction (entry 5). Raising the reaction temperature and extending the reaction time increased the yield of 2a (entry 6). Notably, imidazole was effective to give 2a in the best yields (entries 3 and 4). On the other hand, an attempt to optimize the reaction conditions using strong base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was less successful (entries 7 and 8). Consequently, imidazole was chosen for the further experiments.

Table 3

Base effect on the elimination of $3a$ derived from $1a$ in BTF^a

1) FeCl₃ / pyridine / BmimPF₆ / BTF 2) base / BTF

^a Substrate 1a (0.50 mmol), FeCl₃ (2.2 equiv), pyridine (1.0 equiv), BmimPF₆ (2.2 equiv), BTF (5.0 mL), at room temperature for 1 h. BTF layer containing crude product mixture was treated with base (5.0 equiv) after additional BTF (2.0 mL) was combined.

 $^{\rm b}$ Unreacted 3 a was detected by $^{\rm l}$ H NMR.

^c Bordwell, F. G. Acc. Chem. Res. **1988**, 21, 456–463.

Hall, H. K, Jr. J. Am. Chem. Soc. 1957, 79, 5441-5444.

Bruice, T. C.; Schmir, G. L. J. Am. Chem. Soc. 1958, 80, 148-156.

Leffek, K. T.; Pruszynski, P.; Thanapaalasingham, K. Can. J. Chem. 1989, 67, 590–595.

In order to determine the utility of BTF, screening of other solvents was also performed. We chose toluene and cyclohexane, which dissolve compounds such as 1a, 2a and 3a, and are insoluble in BmimPF6. As shown in Table 4, less quantity of BTF (1.0 mL) did

Table 4

Solvent effect on the oxidation of 1a and the subsequent elimination of $3a^2$

1) FeCl₃ / pyridine / BmimPF₆ / solvent 2) imidazole / solvent

^a Substrate 1a (0.50 mmol), FeCl₃ (2.2 equiv), pyridine (1.0 equiv), BmimPF₆ (2.2 equiv), at room temperature for 1 h. Organic layer containing crude product mixture was heated at 85 \degree C with imidazole (5.0 equiv) for 18–21 h after addition of same solvent (2.0 mL).

^b Same as the entry 3 of Table 3.

BTF (2.0 mL) was used for the reaction with imidazole.

^d Compound 5a was obtained (7%).

not significantly change the yield of 2a (compare entry 2 to 1). However, the reaction in neat ionic liquid without BTF, resulted in no formation of 2a (entry 3). Then, BTF was replaced with toluene and cyclohexane. Mixing each solvent with $BminPF_6$ resulted in the formation of biphasic solutions. When the reaction of 1a was conducted under the formed biphasic conditions, the yields of 2a were quite low in both cases (entries 4 and 5).^{[11](#page-4-0)} These observations clearly suggest that the use of proper quantity of BTF is essential and BTF is certainly superior to toluene and cyclohexane for the FeCl₃ promoted biphasic reaction with BmimPF $₆$.</sub>

We also examined the following experiments to further devise the reaction procedure.^{[12](#page-4-0)} First, the elimination reaction of $3a$ with imidazole was conducted in biphasic solutions without a prior separation of a BTF layer from a BmimPF $₆$ layer. However, this</sub> one-pot procedure resulted in the less formation of 2a (34%) than that for the above described two-step procedure (see entry 3 in Table 3). Secondly, we attempted to reuse the recovered BmimP F_6 layer from the biphasic solutions after the reaction of 1a, and found that 3a was indeed obtained, however, its yield was low (33%).

As described above, the new procedure in which FeCl3 promoted oxidation in the biphasic solvent system of BmimPF $_6$ and BTF followed by imidazole treatment in BTF was found to be effective for the transformation of 1a to 2a. Then, this procedure was applied to other substrates such as 1b, 1c, and 1d (Scheme 1). In the reactions of 1c and 1d, the corresponding ring-expanded enones 2c and 2d were obtained in moderate yields. On the other hand, the imidazole treatment was not necessary for the reaction of 1b to obtain naphthol 4 in good yield.

On the basis of the related investigations, $8a, c, e, f, 13$ plausible reaction pathways are shown in [Scheme 2](#page-3-0). Single electron transfer (SET) from the substrate 1 to FeCl₃ to give the pair of radical cation of 1 and chloride ion. Desilylation within the formed ion pair follows. Cyclopropoxy radical 7, that is a hypothetical intermediate,¹⁴ undergoes regioselective ring-opening to produce tertiary alkyl radical 8 that is subsequently oxidized by another equivalent of $FeCl₃$ to give thermodynamically stable tertiary carbocation 9. Addition of the simultaneously generated chloride ion to 9 gives the chlorine adduct 3. Heating 3 with imidazole leads the elimination of HCl giving enones 2. In the case of 1b, aromatization of the expected enone 2b spontaneously occurred without imidazole to give naphthol 4.

3. Conclusion

We have developed a novel liquid–liquid biphasic reaction system utilizing a combination of FeCl₃ and BmimPF $_6$ in BTF, which could promote electron transfer reaction of bicyclic cyclopropyl silyl ethers to give chloro-substituted ring-expanded cycloalkanones. Following treatment of these compounds with an appropriate base finally produced substituted cyclic enones. Also noteworthy is that these twostep reactions were successfully performed in BTF, which allowed us to skip the ordinary work-up operations for the former oxidation step, such as water-quench, extraction, and evaporation, and find imidazole as the best suitable base for the latter elimination step. $FeCl₃$ is among the most convenient and least expensive iron reagents, and can be used not only as oxidizing reagent 15 but also as Lewis acid. $2,16$ Therefore, our newly developed procedure must be also applicable to other reactions in which both FeCl₃ and imidazolium salts are used.¹⁷ Currently, related investigation is undergoing in our group.

4. Experimental section

4.1. General

NMR spectra were recorded in CDCl₃ with Me₄Si as an internal standard at 200 MHz and 270 MHz for $^1\mathrm{H}$ NMR, and 50 MHz and 68 MHz for 13 C NMR. Column chromatography was performed with silica gel (Wakogel C-200). Preparative TLC was performed on 20 cm \times 20 cm plates coated with silica gel (Wakogel B-5F). FeCl₃ and $Ce(NH_4)_2(NO_3)_6$ were purchased and used for the reactions. BTF, anhydrous DMF, and BmimPF $₆$ were purchased and used</sub> without distillation. MeCN was distilled over P_2O_5 and subsequently distilled with K₂CO₃. Substrates $1a-d^{8c,13}$ $1a-d^{8c,13}$ $1a-d^{8c,13}$ were synthesized according to literature procedures. Substrates and products $(2a,^{13} 2c,^{13} 2d,^{13} 3a,^{13} 4,^{8c} 5a,^{8f}$ and $6a^{13})$ are known compounds.

4.2. Reaction with oxidizing reagents

4.2.1. FeCl₃ or Ce(NH₄)₂(NO₃)₆ promoted reaction of 1a in DMF or MeCN. FeCl₃ promoted reaction of $1a$ in DMF was previously reported.^{8e} An MeCN solution (6 mL) of **1a** (123.2 mg, 0.50 mmol) was added to $Ce(NH_4)_2(NO_3)_6$ (603.0 mg, 1.10 mmol) in MeCN (4 mL) under N_2 . The resulting mixture was stirred under N_2 at room temperature for 1 h. Then, it was extracted with $Et₂O$ $(30 \text{ mL} \times 3)$ after addition of water. The extract was treated with water, satd aqueous $Na₂S₂O₃$, satd $a₁$ satd aqueous NaCl, and dried over anhydrous MgSO4. The residue obtained after concentration was subjected to TLC $(CH_2Cl_2/n-C_6H_{14}=1/1$, three times) to give 2a (45.6 mg, 0.265 mmol, 53%).

4.2.2. FeCl₃ promoted reaction of $1a$ in the presence or absence of BmimPF $_6$ in BTF. A BTF solution (3 mL) of 1a (123.2 mg, 0.50 mmol) was added to FeCl₃ (178.4 mg, 1.10 mmol) and pyridine (0.040 mL, 0.50 mmol) in the presence or absence of BmimPF $_6$ (0.23 mL, 1.10 mmol) in BTF (2 mL) under N₂. The resulting mixture was stirred under N_2 at room temperature for 1 h. Then, it was extracted with Et_2O (30 mL \times 3) after addition of water. The extract was treated with water, satd aqueous $Na₂S₂O₃$, satd aqueous NaHCO₃, satd aqueous NaCl, and dried over anhydrous $MgSO₄$. The residue obtained after concentration was subjected to TLC $(CH_2Cl_2/$ $n - C_6H_{14} = 1/1$) to give 3a. In the absence of BmimPF₆, 82.7 mg of 1a (0.34 mmol, 67%) was also recovered. Then, NaOAc (5.0 equiv vs converted $1a$) and MeOH (2–5 mL) were added to $3a$. The mixture was refluxed at 85 \degree C for 2 h. After cooling, the mixture was concentrated, then water (30 mL) was added. The mixture was extracted with $Et₂O$ (30 mL \times 3). The extract was treated with water, satd aqueous $Na₂S₂O₃$, satd aqueous Na Cl , and dried over anhydrous MgSO₄. The residue obtained after concentration was subjected to TLC (CH₂Cl₂/n-C₆H₁₄=1/1) to give 2a, 12.7 mg (0.074 mmol, 15%) or 58.5 mg (0.34 mmol, 68%) in the absence or presence of $BmimPF_6$, respectively.

4.2.3. BmimPF₆ quantity effect on FeCl₃ promoted reaction of 1a in BTF. A BTF solution (3 mL) of 1a (123.2 mg, 0.50 mmol) was added to FeCl3 (178.4 mg, 1.10 mmol), pyridine (0.040 mL, 0.50 mmol), and BmimPF₆ (0.10–1.00 mL, 0.96–9.6 mmol) in BTF (2 mL) under N₂. The resulting mixture was stirred under N_2 at room temperature for 1 h. Then, a BmimPF $_6$ layer was rinsed with Et₂O (2 mL) after separation from a BTF layer. The residue obtained after concentration of BTF and Et₂O was subjected to TLC (CH₂Cl₂/n-C₆H₁₄=1/1) to give 1a and 3a. Then, 3a was subjected to NaOAc treatment described above to give 2a.

4.2.4. Base effect on the elimination of $3a$ derived from $1a$ in BTF. A BTF solution (3 mL) of $1a$ (123.2 mg, 0.50 mmol) was added to FeCl₃ (178.4 mg, 1.10 mmol), pyridine (0.040 mL, 0.50 mmol), and BmimPF $_6$ (0.23 mL, 1.1 mmol) in BTF (2 mL) under N₂. The resulting mixture was stirred under N_2 at room temperature for 1 h. Then, a BmimPF $_6$ layer was rinsed with BTF (2 mL) after separation from BTF layer. A base (2.5 mmol) was added to BTF solution, and the mixture was stirred at room temperature \sim 120 °C for 2–21 h. After cooling, the mixture was filtrated and concentrated. The residue was subjected to TLC (CH₂Cl₂/n-C₆H₁₄=1/1) to give 2a.

4.2.5. Solvent effect on the oxidation of $1a$ and the subsequent elimination of $3a$. An appropriate solution (0.75 or 3.0 mL) of $1a$ $(123.2 \text{ mg}, 0.50 \text{ mmol})$ was added to FeCl₃ $(178.4 \text{ mg}, 1.10 \text{ mmol})$, pyridine (0.040 mL, 0.50 mmol), and BmimPF $_6$ (0.23 mL, 1.1 mmol) in the same solvent (0.25 or 2.0 mL) under N_2 . In the case of neat reaction (entry 3 in [Table 4](#page-2-0)), 1a was dissolved in pyridine and then the solution was added to FeCl₃ and BmimPF $_6$. The resulting mixture was stirred under N_2 at room temperature for 1 h. Then, a BmimPF $_6$ layer was rinsed with same solvent (2 mL) after separation from the solvent layer. Imidazole (170.2 mg, 2.5 mmol) was added to this solution, and the mixture was heated at 85 $\mathrm{^{\circ}C}$ for 18– 21 h. After cooling, the mixture was filtrated and concentrated. The residue was subjected to TLC to give 2a.

4.2.6. General procedure of FeCl₃ promoted reaction of 1 and sequential elimination of 3 in BTF. A BTF solution (3 mL) of 1a $(123.2 \text{ mg}, 0.50 \text{ mmol})$ was added to FeCl₃ $(178.4 \text{ mg}, 1.10 \text{ mmol})$, pyridine (0.040 mL, 0.50 mmol), and $BmimPF_6$ (0.23 mL, 1.1 mmol) in BTF (2 mL) under N_2 . The resulting mixture was stirred under N_2 at room temperature for 1 h. Then, a BmimPF $₆$ layer was rinsed</sub> with BTF (2 mL) after separation from BTF layer. Imidazole (170.2 mg, 2.5 mmol) was added to BTF solution, and the mixture was heated at 85 \degree C for 21 h. After cooling, the mixture was filtrated and concentrated. The residue was subjected to TLC to give 2a. Same treatment of 1c and 1d gave $2c$ (0.253 mmol, 51%) or $2d$ (0.258 mmol, 52%), respectively. In the case of $1b$, 4 (57.6 mg, 0.364 mmol, 73%) was obtained without NaOAc treatment.

4.2.7. FeCl₃ promoted reaction of **1a** and sequential elimination of **3a** in biphasic solutions without separation of a BTF layer from a BmimPF₆ layer. A BTF solution (3 mL) of **1a** (123.2 mg, 0.50 mmol) was added to FeCl₃ (178.4 mg, 1.10 mmol), pyridine (0.040 mL, 0.50 mmol), and BmimPF $_6$ (0.23 mL, 1.1 mmol) in BTF (2 mL) under N_2 . The resulting mixture was stirred under N_2 at room temperature for 1 h. Imidazole (170.2 mg, 2.5 mmol) was added, and the biphasic solution mixture was heated at 85° C for 21 h. After cooling, the mixture was filtrated by Celite and concentrated. The residue was subjected to TLC $(CH_2Cl_2/n-C_6H_{14}=1/1$, three times) to give 2a (29.5 mg, 0.171 mmol, 34%).

4.2.8. The reaction of 1a with the recovered BmimPF $₆$ after the</sub> reaction of $1a$. A BTF solution (5 mL) of $1a$ (123.2 mg, 0.50 mmol) was added to the BmimPF $_6$ layer that was separated from the BTF layer after the reaction of 1a with FeCl₃ (2.2 equiv). The resulting mixture was stirred under N_2 at room temperature for 1 h. Then, BmimPF $_6$ layer was rinsed with BTF (2 mL) after separation from BTF layer. Imidazole (170.2 mg, 2.5 mmol) was added to BTF solution, and the mixture was heated at 85 \degree C for 21 h. After cooling, the mixture was filtrated and concentrated. The residue was subjected to TLC $(CH_2Cl_2/n-C_6H_{14}=1/1$, twice) to give 2a (28.2 mg, 0.164 mmol, 33%).

Acknowledgements

We thank Professor Hisahiro Hagiwara (Niigata University) for his useful comments. We also thank Professor James M. Tanko (Virginia Polytechnic Institute and State University, USA) for his help to edit the manuscript. A Grant for Promotion of Niigata University Research Projects is acknowledged.

References and notes

- 1. (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998; (b) Horvath, I. T., Anastas, P. T., Eds. Thematic Issue, Green Chemistry. Chem. Rev. 2007, Vol. 107.
- 2. (a) Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons: Chichester, UK, 1995; Vol. 4; (b) Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem. Rev. 2004, 104, 6217–6254.
- 3. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083; (b) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772–3789; (c) Itoh, T.; Nishimura, Y.; Kashiwagi, M.; Onaka, M. In Ionic Liquids As Green Solvents; Rogers, R. D., Seddon, K. R., Eds.; ACS Symposium Series; Oxford University Press: New York, NY, 2003; Vol. 856; Chapter 21, pp 251–261; (d) Fuchigami, T.; Tajima, T. J. Fluorine Chem. 2005, 126, 181–187; (e) Hagiwara, H. In Ionic Liquids in Organic Synthesis; Malhotra, S. V., Ed.; ACS Symposium Series; Oxford University Press: New York, NY, 2007; Vol. 950; Chapter 11, pp 127-145; (f) Pârvulescu, V. I.; Hardacre, C. Chem. Rev. 2007, 107, 2615–2665; (g) Van Rantwijik, F.; Sheldon, R.

A. Chem. Rev. 2007, 107, 2757–2785; (h) Pavlinac, J.; Zupan, M.; Laali, K. K.; Stavber, S. Tetrahedron 2009, 65, 5625–5662.

- 4. (a) Ogawa, A.; Curran, D. P. J. Org. Chem. 1997, 62, 450–451; (b) Maul, J. J.; Ostrowski, P. J.; Ublacker, G. A.; Linclau, B.; Curran, D. P. In Modern Solvents in Organic Synthesis; Knochel, P., Ed.; Springer: Berlin, 1999; pp 79–105; (c) Nakamura, Y.; Takeuchi, S.; Okumura, K.; Ohgo, Y.; Curran, D. P. *Tetrahedron*
2002, 58, 3963–3969; (d) Jona, H.; Mandai, H.; Chavasiri, W.; Takeuchi, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2002, 75, 291–309; (e) Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14–15; (f) Mikami, K.; Islam, M. N.; Yamanaka, M.; Itoh, Y.; Shindo, M.; Kudo, K. Tetrahedron Lett. 2004, 45, 3681– 3683; (g) Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775–777; (h) Crich, D.; Zou, Y. J. Org. Chem. 2005, 70, 3309–3311; (i) Yorimitsu, H.; Murakami, Y.; Takamatsu, H.; Nishimura, S.; Nakamaura, E. Angew. Chem., Int. Ed 2005, 44, 2708–2711; (j) Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Angew. Chem., Int. Ed 2008, 47, 9730–9733; (k) Suarez, D.; Laval, G.; Tu, S. M.; Jiang, D.; Robinson, C. L.; Scott, R.; Golding, B. T. Synthesis 2009, 1807–1810.
- 5. Orita, A.; Yaruva, J.; Otera, J. Angew. Chem., Int. Ed. 1999, 38, 2267–2270.
- 6. (a) Eberson, L. Electron Transfer Reactions in Organic Chemistry; Springer: Berlin, 1987; (b) Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988, Parts A–D; (c) Kavarnos, G. J. Fundamental of Photoinduced Electron Transfer; VCH: New York, NY, 1993; (d) Advances in Electron Transfer Chemistry; Mariano, P. S., Ed.; JAI: Greenwich, CT, 1991–1999; Vols. 1–6; (e) Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley–VCH: Weinheim, 2001; Vols. 1–5; (f) Organic Electrochemistry; Lund, H., Hammerich, O., Eds.; Marcel Dekker: New York, NY, 2001; (g) CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W. M., Lenci, F., Eds.; CRC: Boca Raton, FL, 2004; (h) Floreancig, P. E., Ed. The chemistry of radical ions (Tetrahedron Symposium-in-Print Number 21). Tetrahedron 2006, 62; (i) Todres, Z. V. Ion-Radical Organic Chemistry Principles and Applications, 2nd ed.; CRC: Boca Raton, FL, 2009; (j) Procter, D. J.; Flowers, R. A., Eds. Electron transfer reagents in organic synthesis (Tetrahedron Symposium-in-Print). Tetrahedron 2009, 65.
- 7. (a) Schmittel, M.; Burghart, A. Angew. Chem., Int. Ed. 1997, 36, 2550–2589; (b) Berger, D. J.; Tanko, J. M. In The Chemistry of Double-Bonded Functional Groups; Patai, S., Ed.; John Wiley & Sons: New York, NY, 1997; pp 1281–1354; (c) Schmittel, M.; Ghorai, M. K. In Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: Weinheim, 2001; Vol. 2, pp 5–54; (d) Hasegawa, E. J. Photosci. 2003, 10, 61–69; (e) Roth, H. D. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Jr., Eds.; John Wiley & Sons: Hoboken, NJ, 2004; Chapter 6, pp 205–272; (f) Cossy, J.; Belloti, D. Tetrahedron 2006, 62, 6459–6470; (g) Griesbeck, A. G.; Hoffmann, N.; Warzecha, K. D. Acc. Chem. Res. 2007, 40, 128– 140; (h) Floreancig, P. E. Synlett 2007, 191–203; (i) Waske, P. A.; Tzvetkov, N. T.; Mattay, J. Synlett 2007, 669–685; (j) Fagnoni, M.; Dodi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725–2756; (k) Hoffmann, N. Chem. Rev. 2008, 108, 1052– 1103; (l) Hoffmann, N. J. Photochem. Photobiol., C. 2008, 9, 43–60.
- 8. (a) Hasegawa, E.; Tsuchida, H.; Tamura, M. Chem. Lett. 2005, 34, 1688–1689; (b) Hasegawa, E.; Takizawa, S.; Seida, T.; Yamaguchi, A.; Yamaguchi, N.; Chiba, N.; Takahashi, T.; Ikeda, H.; Akiyama, K. Tetrahedron 2006, 62, 6581–6588; (c) Hasegawa, E.; Ogawa, Y.; Kakinuma, K.; Tsuchida, H.; Tosaka, E.; Takizawa, S.; Muraoka, H.; Saikawa, T. Tetrahedron 2008, 64, 7724–7728; (d) Hasegawa, E.; Hirose, H.; Sasaki, K.; Takizawa, S.; Seida, T.; Chiba, N. Heterocycles 2009, 77, 1147–1161; (e) Tsuchida, H.; Tamura, M.; Hasegawa, E. J. Org. Chem. 2009, 74, 2467–2475; (f) Hasegawa, E.; Kakinuma, K.; Yanaki, T.; Komata, S. Tetrahedron 2009, 65, 10876–10881.
- 9. Iwaya, K.; Tamura, M.; Nakamura, M.; Hasegawa, E. Tetrahedron Lett. 2003, 44, 9317–9320.
- 10. Same experiments using toluene were conducted (comparable to entries 3, 4, and 5 in [Table 2](#page-1-0)). However, the reactions were not completed (contrastive to entry 4 in [Table 1](#page-1-0)). Results are as follows. The quantity of BmimPF $_6$ (equiv): 2.2, 4.8, 9.6; the recovery of 1a (%): 68, 39, 52; the yield of 2a (%): 16, 26, 23, respectively.
- 11. The difference of the yield of 2a between the result reported in the note 10 and that of entry 4 in [Table 4](#page-2-0) could be due to the difference of the solvent to rinse BmimPF $_6$ phase. While Et₂O was used in the former experiment, toluene was used in the latter. These observations also suggest that toluene would not be an effective extraction solvent toward BmimPF $_6$.
- 12. Although these devised procedures, that are more compatible with green chemistry, do not reach the satisfactory level at this moment, the improvement of them would be certainly the future subject to investigate. We thank two reviewers who independently suggested us to conduct these experiments.
- 13. Hasegawa, E.; Yamaguchi, N.; Muraoka, H.; Tsuchida, H. Org. Lett. 2007, 9, 2811–2814.
- 14. (a) Ito, Y.; Fujii, S.; Saegusa, T. J. Org. Chem. 1976, 41, 2073–2074; (b) Iwasawa, N.; Hayakawa, S.; Funahashi, M.; Isobe, K.; Narasaka, K. Bull. Chem. Soc. Jpn. 1993, 66, 819–827; (c) Booker-Milburn, K. I.; Thompson, D. F. J. Chem. Soc., Perkin Trans. 1 1995, 2315–2321; (d) Jida, M.; Guillot, R.; Ollivier, J. Tetrahedron Lett. 2007, 48, 8765–8767.
- 15. Reagents for radical and radical ion chemistry In Handbook of Reagents for Organic Synthesis; Crich, D., Ed.; John Wiley & Sons: New York, NY, 2008.
- 16. Diaz, D.; Miranda, P. O.; Padron, J. I.; Martin, V. S. Curr. Org. Chem. 2006,10, 457–476. 17. Representative examples in which FeCl₃ has been used for organic synthesis in imidazolium ionic liquids: (a) Alexander, M. V.; Khandekar, A. C.; Samant, S. D. J. Mol. Catal., A 2004, 223, 75–83; (b) Nguyen, M. D.; Nguyen, L. V.; Jeon, E. H.; Kim, J. H.; Cheong, M.; Kim, H. S.; Lee, J. S. J. Catal. 2008, 258, 5–13; (c) Chen, X.; Peng, Y. Catal. Lett. 2008, 122, 310–313; (d) Bica, K.; Gaertner, P. Eur. J. Org. Chem. 2008, 3453–3456.